PUBLICIDAD

El sonido de alta resolución está de moda. Buena parte de los fabricantes de equipos de música, y cada vez más sellos discográficos, sobre todo los que venden a través de Internet, parecen empeñados en convencernos de que el audio de alta resolución es al que todos los que adoramos la música debemos aspirar si queremos disfrutarla con la máxima calidad posible.

Sobre el papel existen fundamentos técnicos que justifican la existencia del audio de alta resolución y nos indican que su calidad debería ser mayor que la que nos ofrece el CD. Pero también hay razones sólidas que nos invitan a no dar por sentada su superioridad, al menos no de una forma tan clara, y poner en tela de juicio algunas de las virtudes que nos vende la industria. Veamos qué es el sonido de alta resolución, qué necesitamos para disfrutarlo, y, sobre todo, si realmente nos ofrece una experiencia mejor que la música con calidad estándar (la del CD).

¿Qué es el sonido de alta resolución?

Para entender de una forma sencilla qué nos ofrece el sonido de alta resolución nos viene bien repasar cómo se almacena la música en los CD que todos conocemos. Estos discos, a diferencia de los vinilos, nos permiten guardar información en el dominio digital, mientras que los discos de vinilo son analógicos. Esto significa que la música de un CD está codificada en forma de unos y ceros, exactamente de la misma manera que la información que tenemos en el disco duro de nuestro ordenador, que también es digital.

En Xataka El sonido de tu smartphone puede parecerse al del cine gracias a la neurociencia: así es como Dolby ha integrado en él audio Atmos

Pero un CD no tiene una capacidad infinita; de hecho, el tamaño de las diminutas muescas que vemos en su superficie si lo miramos con un microscopio y la distancia que separa cada una de ellas de las adyacentes revela cuánta información es capaz de albergar. Precisamente, de una forma simplificada, esto es lo que diferencia al CD, el DVD y el Blu-ray Disc: el tamaño de los pequeños orificios que codifican la información y la distancia que los separa. Si comparamos dos discos con el mismo diámetro tendrá más capacidad aquel que tenga estas muescas más pequeñas y más juntas. Este parámetro, precisamente, es el que determina la longitud de onda del láser que debemos utilizar para extraer la información.

La tecnología del formato CD fue desarrollada a finales de los años 70 por Philips y Sony, y fueron los ingenieros de esta última compañía los que propusieron codificar la información utilizando una resolución de 16 bits y una frecuencia de muestreo de 44,1 kHz. Pero estas cifras no fueron elegidas al azar; estas especificaciones permiten a este formato reproducir los sonidos que se encuentran en el rango de frecuencias que va desde 20 Hz a 20 kHz, que coincide con bastante precisión con el límite de frecuencias que es capaz de percibir el sistema auditivo humano, aun teniendo presente que no todas las personas tenemos la misma capacidad auditiva.

El CD usa un muestreo de 44,1 kHz para, según el teorema de Nyquist-Shannon, poder reproducir frecuencias de hasta 20 kHz

Para entender qué es eso de la resolución y la frecuencia de muestreo sin entrar en detalles demasiado farragosos podemos pensar que para poder almacenar una señal analógica, y, por tanto, continua, en un medio digital, que tiene una capacidad limitada, es imprescindible «trocear» esa señal continua en pequeños fragmentos, o muestras, e introducir tantos como quepan en el soporte digital. La resolución nos indica el número de bits que podemos utilizar para describir cada una de esas muestras, que, a su vez, revela el número de variaciones o posibilidades que puede adoptar cada una de ellas. Y la frecuencia de muestreo nos indica cuántas vamos a poder tomar.

Si nos ceñimos a las características del CD podemos ver que nuestra música se obtiene tomando 44.100 muestras por segundo (corresponden a los 44,1 kHz) a partir de la señal analógica original, y cada una de ellas se codifica en un paquete de datos que emplea 16 bits. Y en este punto, por fin, es en el que entra en juego el audio de alta resolución.

El punto de partida de esta tecnología es fácil de entender: presupone que si incrementamos la resolución, la frecuencia de muestreo, o, incluso, ambos parámetros a la vez al pasar una señal analógica al dominio digital, podremos «reconstruir» la señal analógica original con más precisión. Y realmente es así. Por esta razón las especificaciones utilizadas habitualmente en los formatos de audio de alta resolución son 24 bits y 96 kHz, o bien 24 bits y 192 kHz. Ambas opciones, sobre el papel, deberían permitirnos recrear la señal continua original con más precisión que los 16 bits y 44,1 kHz del CD, o, lo que es lo mismo, descartarán menos información de la toma de sonido original.

Pero esto no es todo. Además, al subir la resolución hasta los 24 bits se incrementa la gama dinámica y mejora la relación señal/ruido (nuestros compañeros de Xataka Smart Home nos explican qué significan estos parámetros en este post). Una resolución de 16 bits nos permite codificar un total de 65.536 niveles posibles para cada una de nuestras muestras, mientras que una de 24 bits alcanza los 16.777.216 niveles.

La resolución utilizada habitualmente en los formatos de audio de alta definición es 24 bits, y la frecuencia de muestreo 96 kHz o 192 kHz

La diferencia entre los dos extremos, que es donde se encuentran el nivel más bajo y el más alto, nos indica la diferencia de gama dinámica entre una resolución y otra. Con todos estos datos sobre la mesa podemos pensar que el sonido de alta resolución <


¿Te gustó la nota?

PUBLICIDAD


Fuente: www.xataka.com
Noticias Relacionadas
Compartir Compartir Twittear